Source code for multiScaleAnalysis.Visualization.visualize_with_napariHighRes_U2OS_segmentation

import numpy as np
import napari
import os

import skimage.transform
from tifffile import imread, imwrite

[docs] class image_visualizer(): """ This class generates visualizations of high-resolution segmentation results. """
[docs] def __init__(self): """ Initialize data folders and start Napari """ self.rawdatafolder = "rawdatafolder" self.segmentationfolder = "segmenteddatafolder" self.visualizedfolder = "outputfolder" self.region = "high_stack_001" self.establish_param = 0 self.viewer = napari.Viewer()
[docs] def load_images(self, vis_param): """" Load images from folder and render them according Visualization parameters specified. :param vis_param: Python dictionary of visulization paramters, e.g. vis_param['camera_angle1'] """ #get all timepoints from folder dir_list = os.listdir(self.segmentationfolder) timepointlist = [] for path in dir_list: if path.startswith('t'): timepointlist.append(path) timepointlist.sort() print(timepointlist) #if you establish parameters, only open first timepoint if self.establish_param==1: timepointlist = ["t00000"] i_time="t00000" for i_time in timepointlist: #generate filepaths and folders segmentedimagepath = os.path.join(self.segmentationfolder, i_time, vis_param['imagename_label']) rawimagepath = os.path.join(self.rawdatafolder, i_time, self.region, vis_param['imagename_raw']) rawimagepath_cancer = os.path.join(self.rawdatafolder, i_time, self.region, vis_param['imagename_cancer']) visualization_folder1 = os.path.join(self.visualizedfolder, self.region, "angle_1a") visualization_folder2 = os.path.join(self.visualizedfolder, self.region, "angle_2a") try: os.makedirs(visualization_folder1) except OSError as error: pass try: os.makedirs(visualization_folder2) except OSError as error: pass visualized_file = os.path.join(visualization_folder1, i_time + ".tif") visualized_file2 = os.path.join(visualization_folder2, i_time + ".tif") #open images input_image = imread(rawimagepath) cancer_image= imread(rawimagepath_cancer) label_image = imread(segmentedimagepath) print(input_image.shape) label_image_rescaled = skimage.transform.resize(label_image, input_image.shape, order=0) print("image rescaled") #add images as layers image_layer = self.viewer.add_image(input_image, gamma=vis_param['raw_gamma'], contrast_limits=vis_param['raw_contrast_limits']) cancer_layer = self.viewer.add_image(cancer_image, gamma=vis_param['raw_gamma_cancer'], opacity=vis_param['opacity_cancer'], contrast_limits=vis_param['raw_contrast_limits_cancer'], colormap='red') layer_image_rescaled = self.viewer.add_labels(label_image_rescaled, opacity=vis_param['opacity_label'], blending=vis_param['label_blending']) #set rendering to 3D and set camera zoom parameters self.viewer.dims.ndisplay = vis_param['rendering_dimension'] self.viewer.camera.zoom = vis_param['camera_zoom'] #rescale 3D data to be correct dimensions self.viewer.layers['input_image'].scale = vis_param['raw_rescale_factor'] self.viewer.layers['cancer_image'].scale = vis_param['raw_rescale_factor'] self.viewer.layers['label_image_rescaled'].scale = vis_param['label_rescale_factor'] #save a first camera position self.viewer.camera.angles = vis_param['camera_angle1'] imagereturn = self.viewer.screenshot(canvas_only=True, scale=vis_param['scale_to_save']) imwrite(visualized_file, imagereturn) #save without vasculature #get angle from napari by entering: viewer.camera.angles in console self.viewer.camera.angles = vis_param['camera_angle2'] imagereturn2 = self.viewer.screenshot(canvas_only=True, scale=vis_param['scale_to_save']) imwrite(visualized_file2, imagereturn2) #if you establish the parameters, run napari, otherwise delete the layers for next timepoint if self.establish_param==1: napari.run() else: self.viewer.layers.remove('label_image_rescaled') self.viewer.layers.remove('input_image') self.viewer.layers.remove('cancer_image')
if __name__ == '__main__': visualization_param = dict( camera_angle1=(172, -32, 115), camera_angle2=(6, -49, -95), camera_zoom=0.32, raw_contrast_limits=(77,730), raw_contrast_limits_cancer=(104, 201), raw_gamma=0.7, raw_gamma_cancer=1, opacity_cancer=0.32, opacity_label=1, rendering_dimension=3, label_blending='additive', # raw_rescale_factor =[9.210526, 1, 1], # label_rescale_factor = [9.210526, 1, 1], raw_rescale_factor =[3.418, 1, 1], label_rescale_factor =[3.418, 1, 1], #raw_rescale_factor=[1, 1, 1], #label_rescale_factor=[1, 1, 1], establish_param=0, set_label_colormap='default', scale_to_save=5, display_rawcancersignal=0, imagename_label="labels_xy-merged.tif", imagename_raw="1_CH594_000000.tif", imagename_cancer="1_CH552_000000.tif" ) imagevisu = image_visualizer() imagevisu.rawdatafolder = "/archive/bioinformatics/Danuser_lab/Fiolka/LabMembers/Stephan/multiscale_data/xenograft_experiments/U2OS_WT/20220729_Daetwyler_U2OS/Experiment0001" experimentfolder_result = imagevisu.rawdatafolder + "_highres_manuallyCompiled2" imagevisu.segmentationfolder = os.path.join(experimentfolder_result, 'high_stack_002') imagevisu.visualizedfolder = os.path.join(experimentfolder_result, 'visualized_bright2') imagevisu.region = 'high_stack_002' imagevisu.establish_param = 0 imagevisu.load_images(visualization_param)