Source code for multiScaleAnalysis.Visualization.visualize_with_napariHighRes_MDAMB231

import numpy as np
import napari
import os

import skimage.transform
from tifffile import imread, imwrite

[docs] class image_visualizer(): """ This class generates visualizations of highres segmentation results. """
[docs] def __init__(self): """ Initialize data folders and start Napari """ self.rawdatafolder = "rawdatafolder" self.segmentationfolder = "segmenteddatafolder" self.visualizedfolder = "outputfolder" self.region = "high_stack_001" self.establish_param = 0 self.viewer = napari.Viewer()
[docs] def load_images(self, vis_param): """" Load images from folder and render them according Visualization parameters specified. :param vis_param: Python dictionary of visulization paramters, e.g. vis_param['camera_angle1'] """ #get all timepoints from folder dir_list = os.listdir(self.rawdatafolder) timepointlist = [] for path in dir_list: if path.startswith('t'): timepointlist.append(path) timepointlist.sort() print(timepointlist) #if you establish parameters, only open first timepoint if self.establish_param==1: timepointlist = ["t00000"] i_time="t00000" for i_time in timepointlist: #generate filepaths and folders rawimagepath_macrophages = os.path.join(self.rawdatafolder, i_time, self.region, vis_param['imagename_raw']) rawimagepath_cancer = os.path.join(self.rawdatafolder, i_time, self.region, vis_param['imagename_cancer']) visualization_folder1 = os.path.join(self.visualizedfolder, self.region, "angle_1a") visualization_folder2 = os.path.join(self.visualizedfolder, self.region, "angle_2a") try: os.makedirs(visualization_folder1) except OSError as error: pass try: os.makedirs(visualization_folder2) except OSError as error: pass visualized_file = os.path.join(visualization_folder1, i_time + ".tif") visualized_file2 = os.path.join(visualization_folder2, i_time + ".tif") #open images input_image = imread(rawimagepath_macrophages) cancer_image= imread(rawimagepath_cancer) #add images as layers image_layer = self.viewer.add_image(input_image, gamma=vis_param['raw_gamma'], contrast_limits=vis_param['raw_contrast_limits'], colormap=vis_param['raw_colormap']) cancer_layer = self.viewer.add_image(cancer_image, gamma=vis_param['raw_gamma_cancer'], opacity=vis_param['opacity_cancer'], contrast_limits=vis_param['raw_contrast_limits_cancer'], colormap=vis_param['cancer_colormap']) #set rendering to 3D and set camera zoom parameters self.viewer.dims.ndisplay = vis_param['rendering_dimension'] self.viewer.camera.zoom = vis_param['camera_zoom'] #rescale 3D data to be correct dimensions self.viewer.layers['input_image'].scale = vis_param['raw_rescale_factor'] self.viewer.layers['cancer_image'].scale = vis_param['raw_rescale_factor'] #interpolation to cubic self.viewer.layers['input_image'].interpolation3d ='cubic' self.viewer.layers['cancer_image'].interpolation3d ='cubic' #self.viewer.layers['label_image_rescaled'].scale = vis_param['label_rescale_factor'] self.viewer.layers.remove('cancer_image') #save a first camera position self.viewer.camera.angles = vis_param['camera_angle1'] imagereturn = self.viewer.screenshot(canvas_only=True, scale=vis_param['scale_to_save']) imwrite(visualized_file, imagereturn) #save without vasculature #get angle from napari by entering: viewer.camera.angles in console self.viewer.camera.angles = vis_param['camera_angle2'] #self.viewer.layers.remove('cancer_image') imagereturn2 = self.viewer.screenshot(canvas_only=True, scale=vis_param['scale_to_save']) imwrite(visualized_file2, imagereturn2) #if you establish the parameters, run napari, otherwise delete the layers for next timepoint if self.establish_param==1: napari.run() else: self.viewer.layers.remove('input_image')
#self.viewer.layers.remove('cancer_image') if __name__ == '__main__': visualization_param = dict( camera_angle1=(-179.3128327479437, 22.754843487827394, 94.38287509770109), camera_angle2=(-3.372776166910392, -1.3888899435527813, -105.76142446338508), camera_zoom=0.27, #raw_contrast_limits=(126,482), raw_contrast_limits=(87, 657), raw_contrast_limits_cancer=(102, 1529), #raw_gamma=0.67, raw_gamma=0.45, raw_gamma_cancer=0.59, raw_colormap ='gray_r', cancer_colormap='gray', opacity_cancer=0.58, opacity_label=1, rendering_dimension=3, label_blending='additive', # raw_rescale_factor =[9.210526, 1, 1], # label_rescale_factor = [9.210526, 1, 1], raw_rescale_factor =[2.564, 1, 1], label_rescale_factor =[2.564, 1, 1], #raw_rescale_factor=[1, 1, 1], #label_rescale_factor=[1, 1, 1], establish_param=0, set_label_colormap='default', scale_to_save=5, display_rawcancersignal=0, imagename_raw="1_CH488_000000.tif", imagename_cancer="1_CH594_000000.tif" ) imagevisu = image_visualizer() imagevisu.rawdatafolder = "/archive/bioinformatics/Danuser_lab/Fiolka/LabMembers/Stephan/multiscale_data/xenograft_experiments/MDA-MB-231/20230720_control/Experiment0010" experimentfolder_result = imagevisu.rawdatafolder + "_highres_visualized" imagevisu.segmentationfolder = os.path.join(experimentfolder_result, 'high_stack_001') imagevisu.visualizedfolder = os.path.join(experimentfolder_result, 'visualized_bright4') imagevisu.region = 'high_stack_002' imagevisu.establish_param = 0 imagevisu.load_images(visualization_param) #adapt image pathfile = os.path.join(experimentfolder_result, "visualized_bright4", "angle_1a.tif") finalimage = imread(pathfile) # make boundingbox and bound image binarybox = np.zeros(finalimage.shape) binarybox[:, 812:2151, 348:3076,:] = 1 pathfile_save = os.path.join(experimentfolder_result, "binarybox.tif") imwrite(pathfile_save, np.uint8(binarybox)) finalimage[np.logical_and(finalimage==0, np.logical_not(binarybox))]=202 print("test") selectedimage = finalimage + binarybox anotherstack_indices = np.where(selectedimage == 0) anotherstack_indices2 = np.where(finalimage == 0) finalimage[anotherstack_indices] = 202 print("start file writing") pathfile_save = os.path.join(experimentfolder_result, "angle_1aV2.tif") imwrite(pathfile_save, np.uint8(finalimage))